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We show that there is a close relationship between quantum mechanics and 
ordinary probability theory. The main difference is that in quantum mechanics 
the probability is computed in terms of an amplitude function, while in probabil- 
ity theory a probability distribution is used. Applying this idea, we then construct 
an amplitude model for quantum mechanics on phase space. In this model, 
states are represented by amplitude functions and observables are represented 
by functions on phase space. If we now postulate a conjugation condition, the 
model provides the same predictions as conventional quantum mechanics. In 
particular, we obtain the usual quantum marginal probabilities, conditional 
probabilities and expectations. The commutation relations and uncertainty prin- 
ciple also follow. Moreover SchrSdinger's equation is shown to be an averaged 
version of Hamilton's equation in classical mechanics. 

1. A M P L I T U D E  F U N C T I O N S  

It  is well  k n o w n  that  p robab i l i t i e s  are c o m p u t e d  different ly for  q u a n t u m  
systems than  for  c lass ical  s ta t is t ical  systems ( F e y n m a n ,  1948; F e y n m a n  and  
Hibbs ,  1965; G u d d e r ,  1984; Mont ro l l ,  1952). Rough ly  speaking ,  for  c lass ical  
systems the  p r o b a b i l i t y  o f  an event  is mere ly  the  sum of  the  p robab i l i t i e s  
o f  the ou tcomes  c o m p o s i n g  the event. F o r  a q u a n t u m  system the p robab i l i t y  
is c o m p u t e d  in terms o f  an amp l i t ude  func t ion  ~ .  The p robab i l i t y  o f  a 
q u a n t u m  event  A is f o u n d  by  summing  J over  the  ou tcomes  in A and  
tak ing  the m o d u l u s  squa red  o f  this sum. The  cross terms give in te r fe rence  
effects which  are  charac te r i s t i c  o f  quan tum systems bu t  which  are  not  p resen t  
in c lass ical  ones.  

Let  us i l lus t ra te  this  by  a s imple  example .  Let  ~ = { w l , . . . ,  o~n} be  a 
finite set o f  ou tcomes  co r r e spond ing  to a s ta t is t ical  system S. I f  S is c lassical ,  
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one has a probability function P: fl  -~ [0, 1] satisfying ZP(o)i) = 1.' I f  A _ l~ 
is an event, then the probabili ty of  A is given by 

P(A) =Zo~,~AP(o,) 

Then P has the usual properties of  a probabili ty measure, namely, 
(a) 0<- P(A) <- 1 
(b) P ( n )  = 1 
(c) P ( A w B ) = P ( A ) + P ( B )  ifAc~ B = ~  

Notice that in this case any • _c ~ may be considered to be an event. 
On the other hand, if S is quantum mechanical,  one has an amplitude 

function ~ :  f ~ C  satisfying [E~r 2= 1. I f  A_c12 is a quantum event 
then we define the quantum probability of  A by 

Pq ( A ) = IZ,o,~ASt ( o),)l 2 

We immediately notice some very strange behaviors, which are sometimes 
called "quan tum paradoxes."  First of all we can have Pq ( A ) >  1 for some 
subsets A c ~ .  This shows that not all subsets of  ~ can be considered to 
be quantum events. Also, even i fA and B are quantum events and A c~ B = 
we may have Pq(Aw B) # Pq(A)+Pq(B). This may be interpreted as mean- 
ing that A and B are not simultaneously observable. That is, a measurement  
of A may interfere with a measurement of  B. Among the properties (a), 
(b), and (c) of  a probability measure, the only one we can be sure of  is 
property (b) that Pq(f~) = 1. As a simple example, let ~ = {o)l, o)z, o)3} and 
let s / :D-~  C be the amplitude function s4(o)l)= M(o)2)= 1, ~(o)3)=-1. I f  
A = {o)1, o)2}, then Pq(A)=4 so A is not a quantum event. I f  B = {o)l}, 
C = {o)3}, then Pq(B) = Pq(C) = 1 so B and C m a y b e  considered as quantum 
events. However,  B n  C = Q  but Pq(Bw C) = 0 #  Pq(B)+Pq(C). 

Even though quantum systems exhibit some unusual behavior, they 
can still be studied in a systematic manner. Continuing our analogy in the 
previous paragraph,  let G: l ) ~  R; that is, G is a random variable. I f  S is 
classical, the expectation of G is computed by E (G)  = 2s G(o)~)P(o)i). Again, 
E has very nice properties: 

(1) E ( 1 ) =  1 
(2) E(aG~+flG2)=aE(GO+[3E(G2), ct, f l cR  
(3) E(G)>-O if G - 0  

I f  S is quantum mechanical, we must proceed differently. In this case only 
certain random variables can be interpreted as quantum observables. We 
can always write G in the form G = Y-OtiXAi where a~ ~ %. for i # j .  Now G 
is a quantum observable only if the sets A~ are quantum events. I f  this is 
the case, we define Eq(G)= ZctiPq(A~). Then conditions (1) and (3) hold 
for Eq but (2) may fail. 
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In the sequel we shall primarily be interested in functions G: ~ x f~ --> R 
of two variables. This case is far more interesting mathematically and more 
applicable for quantum mechanics. Assuming stochastic independence, the 
probability measure is given by the product measure P((tbi, wj))= 
P(w~)P(oJj). In the classical case, the expectation of G is given by 

E( G) = E,4P(w,)O(w, , o j )P(o j )  

Then E has the properties (1), (2), and (3) above. In the quantum case, 
the quantum expectation of G is most naturally defined as 

G ( G )  = Xud( ,o , )*  G(o~ . ,oj)s~(, e )  

where * denotes the complex conjugate. Now Eq satisfies (1) and (2) above. 
However, Eq may not satisfy (3). In general, Eq(G)>-0 only if the matrix 
G o = G(r o~) is positive definite. Moreover, Eq(G) need not even be real 
unless Gg is self-adjoint. This is essentially why self-adjoint operators are 
important in quantum mechanics. 

Notice that in the classical case we have 

E( O) = Z,,)P(o,)O(w~, oj)P(oJj)= Y~uP(w~)O(~oj, w,)P(w)) 

This property need not hold in the quantum case. To treat this systematically, 
we define the 1-amplitude of  G: f~ x f ~ R  as 

~l(O)(.,,) = X~O(o~,..,~) J ( o . , , )  

Then the 1-expectation of G is defined as 

E , ( G )  = 2,,~(~o,)*..dl(O)(o,) 

This is what we called Eq(O) above. Similarly we define the 2-amplitude 
of G as 

�9 ~do)(.,:) = X , G ( . , , .  , , , : )~( , , , , )  

and the 2-expectation as 

E2( G) = XW(  o~j)* ~Cd O)( o j) 

In general, El(G) # E2(G) and in fact El(G) = E2(G)*. We have E l (G)  = 
E2(G) only if G is self-adjoint. 

This example motivates our work on an amplitude phase-space model 
for quantum mechanics in the next section, and the reader should keep it 
in mind. However, the theory in the next section will be more complicated 
for three basic reasons. First, we shall be working in a two-dimensional 
continuum R e so sums will be replaced by integrals and amplitudes will be 
replaced by amplitude densities. Second, we will need some rather unusual 
measure theory on ~2 (including some non-Lebesgue measurable sets). 
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Third, we shall not have stochastic independence and the amplitude 
densities will be functions of two variables. 

2. P H A S E - S P A C E  M O D E L  

There is a large body of literature on phase-space models for quantum 
mechanics (Cohen, 1966, 1976; Gudder, 1984; Pitowski, 1984; Srinivas and 
Wolf, 1975; Wigner, 1932). However, to our knowledge, this is the first 
which incorporates the concept of an amplitude density. This work was 
begun in Gudder  (1984), but we now have more definitive results to report. 
There is a similarity between some of our results and those of Pitowski 
(1982, 1983, 1984). However, Pitowski does not use amplitude densities, 
and for this reason our work carries the theory further. 

Let R2={(q,p): q , p ~ }  be a two-dimensional phase-space. For a 
function f :  R 2--> C define fq(. ) =f(q,. ) and f ,  ( . )  = f ( . ,  p). We say that f is 
Q measurable iffq is Lebesgue integrable for all q ~ R and gl(q) = Sf(q, P) dp 
is Lebesgue measurable. Similarly, f is P measurable if fp is Lebesgue 
integrable for all p ~ R and g2(P) = Sf(q, P) dq is Lebesgue measurable. In 
general, a Q- or P-measurable function need not be Lebesgue measurable 
on R 2 and most of the functions we consider will not be. A function f :  R 2--> C 
is an amplitude density if f is both Q measurable and P measurable and 

Not i ce ,  that this implies that gl ~ L2(R, dq), g2 ~ L2(U, dp) and I I gl II = II g2 II = 
1. If  G: R 2--> C is Lebesgue measurable we write G ~ L2(f) if 

f G(q, p)f(q, p) dp ~ L2(~, dq) 

and 

I G(q, p)f(q, p) dq c LE(R, dp) 

Our above remark shows that 1 ~ L2(f). 
We now make a series of definitions. For G c  L2(f) define the Q(P)  

amplitude of G, respectively, by 

sgf (G)(q) = f G(q, p)f(q, p) dp 
d 

df(G)(p) = f G(q,p)f(q,p) dq 
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In the sequel we shall omit the f and write ~r and ~r when no 
confusion can result. For A ~ B(~) (Borel sets) define the amplitudes 

S~Q(A)(q) = ~dQ[XA(P)](q ) 

Sdp(A)(p) = 6dv[Xa(q)](p ) 

and the Q( P )-density reduced by an A measurement of P( Q ), respectively, 

F(q, A) = [~o(A)(q)[ 2 

F( A, p) = [~p(A)(p)[ 2 

For A, B c B(ff~) define the Q( P) probability of B reduced by an A measure- 
ment of P( Q), respectively, 

tzo(B, A) = fn F(q, A) dq 

tzp(B, A) = [ F(A, p) dp 
J B 

The Q( P ) probability of B following an A measurement of P( Q ), respectively, 
are defined as 

~o(BIA) = ~o( B, A ) / lzo(g~, A) 

tzv( BlA) = tze( B, A)/ tzp(~, A) 

For G c L2(f) we define the Q(P) expectation of G, respectively, by 

Eo(G) = f zd~(1)(q)d~ dq 

Ep(G) = I ~r dp 

Finally, if Eo(G)=Ep(G) we write E(G)=EQ(G) and call E(G) the 
expectation of G. 

The following lemma already shows the close similarity between the 
present theory and that of ordinary quantum mechanics: 

Lemma 1. (a) ~4Q(1)EL2(~,dq), Jp(1)cL2(R, dp), II..~dt)(1)ll = 
II~#(1)ll-- 1, (b) EQ[XA(q)]=IZQ(A, ~) =Ia I~Q(I)I 2 dq, Ee[Xa(p)] = 
tzp(A,R)=Sa]Zgv(l)[~ dp; (c) sgo[G(q)]=G(q)~r Mp[G(p)]= 
G(p)Mp(1); (d) Eo[G(q)]= ~ G(q)[~o(1)l 2 dq, Ep[G(p)] = 
J G(p)l~e(1)[  2 dp; (e) G~MQ(G), G-->Mp(G), G~Eo(G)  , G-->Ep(G) 
are linear and /5o(1 ) = Ep(1) = 1. 
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Proof Straightforward application of definitions. �9 
For ~ ~ La(N, dq), we denote the Fourier transform by 

q~(p) - (2~.)1/2 tp(q) e -'qp/~ dq 

The inverse Fourier transform is denoted by 4~(q). We say that an amplitude 
dens i ty f  is regular if ~/{~(G) ~= SgYp(G) for every G = G(p) and G = G(q). 
This is equivalent to the condition s~{~(A) ~= S~Yp(A) for all A ~ B(.R). The 
requirement that f is regular is called the conjugation postulate. The conjuga- 
tion postulate imposes the condition that JYo(G) and S~Yp(G) are Fourier 
conjugates of each other. Second, it introduces Planck's constant into the 
theory. The introduction of the constant h in the integral is justified on 
physical grounds since this makes qp/h dimensionless. The next theorem 
characterizes regular amplitude densities in terms of quantum mechanical 
states. 

Theorem 2. An amplitude density f is regular if and only if (1) for 
every p c N, 

f (q,p)  = (27r)-l/2scf(1)(q) e -iqp/~ a.e. [q] 

(2) for every q ~ 

f(q, P) = (2~-)--I/2sgYO(1)A(p) e'qp/ha.e. [p] 

Proof Let f be an amplitude density that satisfies (1) and (2) and let 
0 = MYo(1). Then 

sq{~[G(p)]= f G(p)f(q,p) dp 

_ 1 f ~ A v  (27r)1/2 G(p)tb(p) e iqp/n dp = (Gqt) (q) 

Hence, ~ f [ G ( p ) ]  ~= G0. We then have 

s ~ [ G ( p ) ]  = f G(p)f(q, p) dq 

1 f ,, = G(p) ~ O(q) e -'qe/n aq = G ~  = s ~ { ~ [ a ( p ) ]  
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Moreover, 

~Sp[G(q)] = f G(q)f(q,p) dq 

- (2~r)1/2 G(q)~,(q) e iqp/h dq = (G~) 

and 

f 
~gSoEG(q)] = J G(q)f(q,p) dp = Gq, 

Hence, ag{~[G(q)]*= agSo[G(q)] and f is regular. Conversely, suppose f is 
regular. Then 

f G(q)f(q, p) dq = 5r = ~r 

_ 1 [ j f o [ G ( q )  ] e_,qp/h dq (2~r) '/2 J 

' I  
- (2~r)1/2 a ( q ) d { ) ( 1 )  e -iqp/~ dq 

It follows that condition (1) holds. Condition (2) also holds since 

I G(p)f(q,p) dp = J{~[G(p)]  = s4fe[G(p)] 

_ 1 [ sr e,qV/~ @ 
(2"/7") 1/2 ) 

1; 
- (2~r)l/: G(p)ag~(1) e 'qp/~ dp 

When f is regular, we shall frequently denote ~/f(1)(q)  simply by 
~0(q). Theorem 2 shows that i f f  is regular, then it corresponds to a unique 
quantum state 0 according to equations (1) and (2). Conversely, it is shown 
in Gudder  (1984) that if ~ is a quantum state, then there exists a regular f 
corresponding to it according to equations (1) and (2). Lemma 1 now shows 
that for regular f  the usual quantum marginal probabilities and expectations 
are reproduced. In particular, ixo(A , R) =IA [0(q)[ 2 dq and [zp(A, •) = 
~A[O(p)12dp. It was proved in Gudder  (1984) that the conditional 
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probabilities are the same as in traditional quantum mechanics. That is, 

~Q(BIA) = tr[EQ(B)E~'(A)P~,EP(A)]/tr[EP(A)P+] 

~p(Bla) =tr[EP(B)EQ(A)P~,EQ(A)]/tr[EQ(A)P~,] 

where P+ is the one-dimensional projection onto 0 and E Q, E P are the 
resolutions of  identity for Q and P, respectively. 

We now assume that 0 is a Schwartz test function, and define the usual 
quantum operators ( QO )( q) = q~( q), ( PO )( q) = -hi(O~O / Oq)( q), ( Pt~ )( p) = 
PO(P). The next theorem shows that the expectations of functions of q and 
p reproduce the Usual quantum results. 

Theorem 3. Let f be a regular amplitude density with corresponding 
quantum state 0. (a) If  G(q, p)= Eam,qmp ", then 

MQ( G) = Za~.Q"P n, ,.~p( G) = Ea,,,.P'( Q~tp ) ^ 

EQ( G) = (Ya,..Qmpno, 0), Ep(G) = (Eam.P'Qmtp, ~) 

(b) For any G~, G2 for which the expressions are defined 

EQ[G,(q) + G2(p)] = Ep[G~(q) + Gz(p)] = ([G,(Q) + G2(P)]~0, ~0) 

Proof (a) We shall prove this result for a function of the form G(q, p) = 
qp. The proof  for more general G is similar: 

Mo(qp)= f qpf(q,p) dp = 1 f ^ (2~r)1/2 q pq~(p) e iqp/~ dp 

= q[-ih(Oq,/Oq)] = QPq, 

f ' f Mp(qp) = qpf(q, p) dq = (2~r)1/~ p qO(q) e -iqp/~ dq 

=p(qO)*=  P(QO)* 

f 
EQ(qp) = J x~(1)(q)Mo(qp)(q) dq = (QP~b, O) 

For the last equation, let F denote the Fourier transform. Then 

Ep(qp) = f M*p(1)(p)Mv(qp)(p) dp = (p(QO)~, ~) 

= (pF(QO), FO) = (F*pFQ~, ~) -- (PQO, ~h) 

(b) The proof  is similar to (a). �9 
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The next corollary shows that the Heisenberg commutation relations 
and uncertainty principle hold in this theory. 

Corollary 4. I f f  is regular, then 
(a) Eq(qp)-Ep(qv)=([O, P]O, O) = ih 
(b) AqAp>-h/2 whereAq=[E(q2)-E2(q)] ~/2 and 

Ap = [E(p 2) - E2(p)] 1/2 
We now consider Schr6dinger's equation. Suppose the classical 

Hamiltonian is 

H(q, p) =p2/2m + V(q) 

If the system is closed, then we have conservation of energy H(q, p)= E. 
Taking the Q amplitude gives dq[H(q, p)] = Mo(E ). Using the linearity of 
do,  Lemma 1, and Theorem 3, we conclude that for a regular f 

H(Q, P)~p = Eqs 

which is, of course, the time-independent Schr6dinger equation. The 
classical dynamics is given by Hamilton's equation dp/dt = -OH/aq. Assum- 
ing this holds in the Q-amplitude average gives 

Hence, 

d o 
dt M~ aq M~ 

Tq 
Integrating both sides gives 

ih 0_._6= H(Q, P)~ 
Ot 

which is the time-dependent Schr6dinger equation. We conclude that 
Schr6dinger's equation is an amplitude averaged version of Hamilton's 
equation for classical mechanics. 

3. REALITY A N D  H I D D E N  VARIABLES 

This amplitude phase-space model can be thought of as a realistic, 
hidden-variables model for quantum mechanics. The hidden variables are 
the points (q, p) of phase space themselves. If we know the point (q, p), 
then we know the precise values of position and momentum. Thus, at least 
theoretically, the model is realistic since position and momentum have 
simultaneous precise values. In practice, however, all that we have available 
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is an amplitude density f (q ,  p). I f f  is regular, then f corresponds to a usual 
quantum state. A dynamical variable is now given by a function G on R 2 
just as in classical mechanics. The corresponding quantum observable is 
obtained by averaging G with the amplitude density. We have also seen 
that quantum mechanics is a stochastic version of classical mechanics. 
However, the averaging must be done correctly. It must be done in terms 
of an amplitude density and not as in traditional probability theory. What 
seems to be happening is that a particle moves classically in a hidden- 
variable phase space. If this motion is randomized by an amplitude density, 
then the wave function quantum dynamics is obtained. 

Roughly speaking, we have proceeded as follows. The dynamical 
equation for nonrelativistic quantum mechanics is Schr/Sdinger's equation 
i(O0/Ot) = H(Q, P)& The fact that i appears in this equation is puzzling. 
Why should a physical dynamics be described by a complex-valued func- 
tion? There is much literature on this question and many investigators have 
tried to answer it. Other researchers have tried to avoid the i using various 
mathematical techniques. In our opinion neither of these attempts have 
been very successful. Our approach is to accept this i and use it as our 
starting point for an axiomatic development of quantum mechanics. Taking 
i together with the fact that quantum mechanics is probabilistic (P) leads 
us to amplitude densities on phase space. We can compute probabilities, 
conditional probabilities, and expectations using the amplitude densities. 
In the cases in which the conjugation postulate (CP) holds, we can recover 
quantum states. We then obtain the usual quantum expressions for the 
probabilities, conditional probabilities, and expectations. Taking the ampli- 
tude average of Hamilton's equation for classical mechanics (CM)  brings 
us back to the quantum mechanical (QM) dynamics given by Schr6dinger's 
equation. In short, 

i + P +  CP+ C M =  QM 
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